• Hello, I'm Yutaka Hitomi.

    A designer of functional molecules

    人見 穣研究紹介はここ

    研究員の紹介はここ

  • WHO I AM

    YUTAKA HITOMI

    Professor

    Department of Applied Chemistry

    Doshisha University

    1-3 Tatara Miyakodani, Kyotanabe

    Kyoto 610-0394, JAPAN

     

    1990.4~1994.3

    Undergraduate Student

    Department of Synthetic Chemistry, Kyoto University

    Supervised by Prof. Yoshihiko Ito

    1994.4~1996.3

    Graduate Student (Master Course)

    Department of Synthetic Chemistry and Biological Chemistry,

    Graduate School of Engineering, Kyoto University

    Supervised by Prof. Hisanobu Ogoshi and Prof. Takashi Hayashi

    1996.4~1999.3

    Graduate Student (Doctor Course)

    Department of Synthetic Chemistry and Biological Chemistry,

    Graduate School of Engineering, Kyoto University

    Supervised by Prof. H. Ogoshi, Prof. Takashi Hayashi and Prof. Susumu Kitagawa

     

    1996.4~1999.3

    JSPS Research Fellow (DC1)

    1999.4~2000.9

    JSPS Research Fellow (PD)

    1999.4~2001.4

    Post-doctoral Fellow (Northwestern University, USA: Prof. Thomas V. O'Halloran)

     

    2001.5~2007.2

    Assistant Professor

    Department of Molecular Engineering, Graduate School of Engineering,

    Kyoto University (Prof. Takuzo Funabiki)

     

    2007.3~2008.3

    Lecturer in Chemistry

    Department of Molecular Engineering, Graduate School of Engineering,

    Kyoto University (Prof. Tsunehiro Tanaka)

     

    2008.4~2014.3

    Associate Professor

    Department of Chemistry and Biochemistry,

    Doshisha University (Prof. Masahito Kodera)

     

    2014.4~present

    Professor

    Department of Chemistry and Biochemistry,

    Doshisha University

     

    2017.10~2021.9

    JST-PRESTO Researcher

    Japan Science and Technology Agency

     

    2022.3~2023.3

    Visiting Professor

    Research Institute for Sustainable Humanosphere, Kyoto University

  • RESEARCH INTERESTS

    Nanozymes: Robust and Highly Active Metalloenzymes for Redox Reaction

    Photocatalytic Reactions: C-C bond formation, CO2 fixation, Selective bond breaking

    Useful Tools for Biological Studies: Fluorescent Probes for Hydrogen Peroxide, etc

    broken image

    Robust Selective Oxidation Catalysts

     

     

     

    broken image

    Fluorescent Probes for Hydrogen Peroxide

     

     

    broken image

    Bioinspired Ethylene Probe

    broken image

    Photoactive Nitric Oxide Donor

    broken image

    Mn-based MRI contrast agent

    broken image

    Uncaging an Intracellular Hydrogen Peroxide Generator

     

     

  • Research in Our Group

    We continually seek exceptional young researchers who are interested in the field of photoredox catalysts, wood chemistry, bioinorganic chemistry, and/or oxidative stress. We welcome students from across the globe, to join us as graduate students and post-doctoral fellows.

     

    Master course studentships

    Doshisha University offers English-based degree programs designed for degree-seeking graduate students.

    International science and technology course.

     

    Doshisha University offers a variety of scholarships to enable international students to concentrate on their studies free from financial concerns.

    Reduced tuition for international students.

    PhD studentships

    All doctoral students age 34 or younger at the time of admission can receive a tuition exemption. So, free from financial concerns.

    Doctoral-Program Young Researcher Scholarship

     

    There are also competitive programs for the most talented graduate students:

    JSPS offers doctoral fellowships to international students

    Monbu-kagaku-sho: MEXT scholarship program for overseas students

    A number of countries have bilateral funding schemes. We advise checking details from individual embassies.

    Post-doctoral positions

    If you want to do a post-doc in our lab, the JSPS fellowships are an easy way to do this.

    JSPS Postdoctoral Fellowship for Foreign Researchers (2 years)

     

    Conditions for JSPS Postdoctoral Fellowship for Foreign Researchers:

    1. hold non-Japanese nationality

    2. have an earned doctorate outside Japan within recent 5 years or under age of 35. (PhD candidates are also eligible if their doctorate is awarded prior to their starting date)

    3. excellence in research (judged mainly by publications, academic awards and recommendation letter)

     

    In all cases, we recommend that prospective post-docs first make contact with us.

    Senior Scientists

    We very much welcome more senior scientists wishing to undertake sabbaticals or visiting fellowships. Please contact us.

  • Contact Me!

    Any inquiry is welcome.

  • PUBLICATIONS

    [97] Blue Light-Promoted Synthesis of Thiochromenopyrroledione Derivatives via Titanium Dioxide-Catalyzed Dual Carbon–Carbon Bond Formation with Thioanisole and Maleimide Derivatives

    P. K. Roy, S. Okunaka, H. Tokudome, Y Hitomi *

    Advanced Syhthesis & Catalysis, Vol. 365, Issue 24, pp. 4556-4561 (2023)

    https://doi.org/10.1002/adsc.202301021

     

    [96] A Simple Method for the Formation of α-Thioalkyl Radicals and the Promotion of Carbon-Carbon Bond Formation by Photoirradiation of Electron Donor-Acceptor Complexes

    Pijush Kanti Roy, Yutaka Hitomi *

    Asian J. Org. Chem. 2023

    https://doi.org/10.1002/ajoc.202300378

     

    [95] Superoxide Dismutase-like Activity of Zeolitic Imidazolate Framework Nanoparticles Comprising Biomimetic Imidazolato-bridged CuZn Units

    Hiroki Nakahara, Akiko Nomura, Shun Tokuda, Mami Okamura, Kiyoshi Fujisawa, Takanori Koitaya, Yasuhiro Yoshida, Shuhei Furukawa and Yutaka Hitomi*

    Chem. Eur. J. 2023

    https://doi.org/10.1002/chem.202300881

     

    [94] Electrochemical Epoxidation Catalyzed by Manganese Salen Complex and Carbonate with Boron-Doped Diamond Electrode

    Pijush Kanti Roy, Keisuke Amanai, Ryosuke Shimizu, Masahito Kodera, Takuya Kurahashi, Kenji Kitayama, Yutaka Hitomi *

    Molecules 2023, 28(4), 1797.

    DOI: 10.3390/molecules28041797

     

    [93] Stacking of Cofacially Stacked Iron Phthalocyanine Dimer on Graphite Achieved High Catalytic CH4 Oxidation Activity Comparable to that of pMMO

    Yamada, Yasuyuki*; Morita, Kentaro; Sugiura, Takuya; Toyoda, Yuka; Mihara, Nozomi; Nagasaka, Masanari; Takaya, Hikaru; Tanaka, Kiyohisa; Koitaya, Takanori; Nakatani, Naoki; Ariga-Miwa, Hiroko; Takakusagi, Satoru; Hitomi, Yutaka; Kudo, Toshiji; Tsuji, Yuta; Yoshizawa, Kazunari; Tanaka, Kentaro*

    JACS Au, accepted.

    DOI: 10.1021/jacsau.2c00618

     

    [92] Burst of DNA Double-Strand Breaks by Dicopper(II) Complex with a p-Cresol-2,6-Bis(amide-tether-dpa) Ligand via Reductive O2-Activation

    Machi Hata, Yuki Kadoya, Yutaka Hitomi, and Masahito Kodera*

    Bulletin of the Chemical Society of Japan, 2022, 95, 1546-1552.

     

    [91] In situ decomposition of bromine-substituted catechol to increase the activity of titanium dioxide catalyst for visible-light-induced aerobic conversion of toluene to benzaldehyde

    Kana Aitsuki; Daiki Fukushima; Hiroki Nakahara; Kazumune Yo; Masahito Kodera; Sayuri Okunaka; Hiromasa Tokudome; Takanori Koitaya; Yutaka Hitomi

    New Journal of Chemistry 2022,46, 9010-9016.

    DOI: 10.1039/d2nj00571a

     

    [90] Alkane Oxidation with H2O2 Catalyzed by Dicopper Complex with 6-hpa Ligand: Mechanistic Insights as Key Features for Methane Oxidation

    Takahashi, H.; Wada, K.; Tanaka, K.; Fujikawa, K.; Hitomi, Y.; Endo, T.; Kodera, M.

    Bulletin of the Chemical Society of Japan, 2022, 95, 8, 1148-1155.

     

    [89] Boosting the visible-light-induced toluene oxidation via synergistic effect between nanoparticulate Pd/BiVO4 photocatalyst and a cyclic nitroxyl redox mediator

    Okunaka, S.; Hitomi, Y.; Tokudome, H.

    Journal of Catalysis, 414, 2022, 137-142.

     

    [88] Enhancement of cancer-cell-selective cytotoxicity by a dicopper complex with a phenanthrene amide-tether ligand conjugate via mitochondrial apoptosis

    M. Hata, I. Saito, Y. Kadoya, Y. Tanaka, Y. Hitomi, M. Kodera*

    Dalton Trans., 2022, 51, 4720-4727.

    DOI: 10.26434/chemrxiv.14728860

     

    [87] Dicopper(II) Complexes of p-Cresol-2,6-Bis(dpa) Amide-Tether Ligands: Large Enhancement of Oxidative DNA Cleavage, Cytotoxicity, and Mechanistic Insight by Intracellular Visualization

    Yuki Kadoya, Machi Hata, Yoshiki Tanaka, Atsuhiro Hirohata, Yutaka Hitomi, and Masahito Kodera*

     

    [86] Selective oxidation of toluene to benzaldehyde over Pd/BiVO4 particles under blue to green light irradiation

    Sayuri Okunaka, Hiromasa Tokudome*, and Yutaka Hitomi*

    Journal of Catalysis 391, 2020, 480-484.

    Inorg. Chem. 2021, 60(8), 5474-5482

     

    [85] Oxidative DNA Cleavage, Formation of μ-1,1-Hydroperoxo Species, and Cytotoxicity of Dicopper(II) Complex Supported by a p-Cresol-Derived Amide-Tether Ligand

    Kadoya, Yuki; Fukui, Katsuki; Hata, Machi; Miyano, Risa; Hitomi, Yutaka; Yanagisawa, Sachiko; Kubo, Minoru; Kodera, Masahito*

    Inorg. Chem. 2019, 58(21), 14294-14298.

     

    [84] Oxidative DNA Cleavage, Formation of μ-1,1-Hydroperoxo Species, and Cytotoxicity of Dicopper(II) Complex Supported by a p-Cresol-Derived Amide-Tether Ligand

    Kadoya, Yuki; Fukui, Katsuki; Hata, Machi; Miyano, Risa; Hitomi, Yutaka; Yanagisawa, Sachiko; Kubo, Minoru; Kodera, Masahito*

    Inorg. Chem. 2019, 58(21), 14294-14298.

     

    [83] Acceleration of Hydrolytic DNA Cleavage by Dicopper(II) Complexes with p-Cresol-Derived Dinucleating Ligands at Slightly Acidic pH and the Mechanistic Insights

    Masahito Kodera, Yuki Kadoya, Kenta Aso, Katsuki Fukui, Akiko Nomura, Yutaka Hitomi, Hiroaki Kitagishi

    Bull. Chem. Soc. Jpn, 2019, 92, 739-747.

     

    [82] Green fabrication of nanoporous BiVO4 films on ITO substrates for photoelectrochemical water-oxidation

    Sayuri Okunaka, Yutaka Hitomi and Hiromasa Tokudome*

    RSC Advances, 2018, 8, 31575-31580.

     

    [81] Development of Artificial Bleomycin: Pentadentate Monocarboxylamide Ligand Having a Spermine Tail for DNA Binding

    Akiko Nomura, Masahito Kodera, and Yutaka Hitomi*

    Peptide Science 2017, 2018, 154-155.

     

    [80] Hydrogen peroxide-reducing factor released by PC12D cells increases cell tolerance against oxidative stress

    Asami Muraishi; Emi Haneta; Yoshiro Saito*; Yutaka Hitomi; Mamoru Sano; Noriko Noguchi*

    Biological and Pharmaceutical Bulletin, 2018, 41(5) 777-785.

     

    [79] Macrophage-Mediated Delivery of Light Activated Nitric Oxide Prodrugs with Spatial, Temporal and Concentration Control

    Michael A. Evans, Po-Ju Huang, Yuji Iwamoto, Kelly N. Ibsen, Emory M. Chan, Yutaka Hitomi, Peter C. Ford*, and Samir Mitragotri*

    Chemical Science, 2018, 9, 3729-3741.

     

    [78] Structurally Simple Cell-permeable Porphyrins: Efficient Cellular Uptake and Photo-toxicity of Porphyrins with Four Peripheral Primary-amine-terminated Oligo(ethylene oxide) Chains

    N. Ohashi, A. Nomura, M. Kodera, and Y. Hitomi*

    Chemistry Letters, 2017, 46 (12), 1754-1756.

     

    [77] Specific Enhancement of Catalytic Activity by a Dicopper Core: Selective Hydroxylation of Benzene to Phenol with Hydrogen Peroxide

    T. Tsuji, A. A. Zaoputra, Y. Hitomi, K. Mieda, T. Ogura, Y. Shiota, K. Yoshizawa, H. Sato, and M. Kodera*

    Angewandte Chemie International Edition, 2017, 56(27), 7779-7782.

     

    [76] DNA Cleavage through Reductive Dioxygen Activation by Iron-Bleomycin Mimics with Carboxamido Ligation: Correlation between DNA Cleavage Efficacy and Redox Potential

    A. Nomura, Y. Iwamoto, K. Arakawa, A. Kashida, M. Kodera, and Y. Hitomi*

    Chemistry Letters, 2017, 46(8), 1109-1111.

     

    [75] Cellular Application of Cell-membrane Permeable Fluorescent Zinc Probe Having a Cationic Peptide Tail

    A. Nomura, A. Kashida, M. Kodera, and Y. Hitomi*

    Peptide Science 2016, 2017, 173-174.

     

    [74] Formation and High Reactivity of the anti-Dioxo Form of High-Spin μ-Oxodioxodiiron(IV) as the Active Species That Cleaves Strong C−H Bonds

    M. Kodera,* S. Ishiga, T. Tsuji, K. Sakurai, Y. Hitomi, Y. Shiota, P. K. Sajith, K. Yoshizawa, K. Mieda, T. Ogura

    Chemistry - A European Journal, 2016, 22 (17), 5924-5936.

     

    [73] Preparation of Fine Particles of Scheelite-Monoclinic Phase BiVO4 via an Aqueous Chelating Method for Efficient Photocatalytic Oxygen Evolution under Visible-light Irradiation

    S. Okunaka, H. Tokudome*, Y. Hitomi, and R. Abe*

    Journal of Materials Chemistry A, 2016, 4, 3926-3932.

     

    [72] Effect of central metal ions on the cytotoxicity of metalloporphyrins having a cationic peptide tail

    A. Nomura, N. Ohashi, R. Miyachi, M. Kodera and Y. Hitomi*

    Peptide Science 2015, 2016, 261-264.

     

    [71] C-O Bond Formation by Arene C-H Activation via Biomimetic and Organocatalytic Oxidation

    Yutaka Hitomi and Kengo Arakawa

    in Catalytic Transformations via C-H Activation 2, Science of Synthesis Ed. by J.-Q. Yu, 2015, pp. 287-313. Georg Thieme Verlag KG, Stuttgart/New York

     

    [70] Uncaging a Catalytic Hydrogen Peroxide Generator through the Photo-Induced Release of Nitric Oxide from a {MnNO}6 Complex

    Yuji Iwamoto, Masahito Kodera, and Yutaka Hitomi*

    Chemical Communications, 2015, 51, 9539-9542.

     

    [69] Mononuclear Nonheme Iron(III) Complexes that Show Superoxide Dismutase-like Activity and Antioxidant Effects against Menadione-Mediated Oxidative Stress

    Yutaka Hitomi*, Yuji Iwamoto, Akihiro Kashida, and Masahito Kodera

    Chemical Communications, 2015, 51, 8702-8704.

     

    [68] Facile Preparation of Stable Aqueous Titania Sols for Fabrication of Highly Active TiO2 Photocatalyst Films

    Sayuri Okunaka, Hiromasa Tokudome*, Yutaka Hitomi, and Ryu Abe*

    Journal of Materials Chemistry A, 2015, 3, 1688-1695.

     

    [67] Gold Nanoparticles Coated with Manganese-Porphyrin that Effectively Shorten the Longitudinal Relaxation Time of Water Molecules Depending on the Particle Size

    Yutaka Hitomi,* Kazuki Aoki, Ryosuke Miyachi, Junya Ohyama, Masahito Kodera, Tsunehiro Tanaka, and Fuminori Sugihara

    Chemistry Letters, 2014, 12, 1901-1903.

     

    [66] Synthesis, Stability and Reactivity of the First Mononuclear Nonheme Oxoiron(IV) Species with Monoamido Ligation: A Putative Reactive Species Generated from Iron-Bleomycin

    Yutaka Hitomi*, Kengo Arakawa, and Masahito Kodera

    Chemical Communications, 2014, 50 (56), 7485-7487.

     

    [65] Development of Green-Emitting Iron Complex-Based Fluorescent Probes for Intracellular Hydrogen Peroxide Imaging

    Yutaka Hitomi*, Toshiyuki Takeyasu, and Masahito Kodera

    Bulletin of the Chemical Society of Japan, 2014, 87(7), 819-824.

     

    [64] Nucleophilic Ring-opening of meso-Substituted 5-Oxaporphyrin by Oxygen, Nitrogen, Sulfur, and Carbon Nucleophiles

    Kazuhisa Kakeya, Masakatsu Aozasa, Tadashi Mizutani,* Yutaka Hitomi and Masahito Kodera

    Journal of Organic Chemistry, 2014, 79 (6), 2591-2600.

     

    [63] Roles of carboxylate donors in O-O bond scission of peroxodiiron(III) to high-spin oxodiiron(IV) with a new carboxylate-containing dinucleating ligand

    Masahito Kodera, Tomokazu Tsuji, Tomohiro Yasunaga, Yuka Kawahara, Tomoya Hirano, Yutaka Hitomi,Takashi Nomura, Takashi Ogura, Yoshio Kobayashi, Pookkottu K. Sajith, Yoshihito Shiota and Kazunari Yoshizawa

    Chemical Science, 2014, 5, 2282-2292.

     

    [62] Water Proton Relaxivity, Superoxide Dismutase-like Activity, and Cytotoxicity of a Manganese(III) Porphyrin Having Four Poly(ethylene glycol) Tails.

    Hitomi, Y.*; Ekawa, T.; Kodera, M.

    Chemistry Letters, 2014, 43 (5), 732-734.

     

    [61] Electronic Tuning of Nitric Oxide Release from Manganese Nitrosyl Complexes by Visible Light Irradiation: Enhancement of Nitric Oxide Release Efficiency by Nitro-Substituted Quinoline Ligand.

    Hitomi, Y.*; Iwamoto, Y.; Kodera, M.

    Dalton Transactions, 2014, 43, 2161-2167.

     

    [60] Iron Complex-Based Fluorescent Probes for Intracellular Hydrogen Peroxide Detection.

    Hitomi, Y.*;Takeyasu, T.; Kodera, M.

    Chemical Communications (Cambridge, United Kingdom) 2013, 49, 9929-9931.

     

    [59] An Iron(III) Tetradentate Monoamido Complex as a Nonheme Iron-Based Peroxidase Mimetic.

    Hitomi, Y.*; Hiramatsu, K.; Arakawa, K.;Takeyasu, T.; Hata, M.; Kodera, M.

    Dalton Transactions 2013, 42 (36), 12878-12882.

     

    [58] Electronic Tuning of Iron-Oxo Mediated C-H Activation: Effect of Electron Donating Ligand on Selectivity.

    Hitomi, Y.*; Arakawa, K.; Kodera, M.

    Chemistry - A European Journal 2013, 19 (43), 14697-14701..

     

    [57] Synthesis and Characterization of Ratiometric Fluorescent Zinc Ion Probe Having Cationic Short Peptide Tail.

    Hitomi, Y.*; Takeyasu, T.; Matsuda, S.; Nomura, A.; Kashida, A.; Hayashi, M.; Kodera, M.

    Peptide Science 2012, 49th, 297-300.

     

    [56] Oxidative DNA Cleavage by Synthetic Mononuclear Nonheme Iron Complex Having Cationic Short Peptide Tail for DNA Binding.

    Hitomi, Y.*; Nomura, A.; Matsuda, S.; Kashida, A.; Kodera, M.

    Peptide Science 2012, 49th, 279-282.

     

    [55] A silver complex with an N,S,S-macrocyclic ligand bearing an anthracene pendant arm for optical ethylene monitoring.

    Hitomi, Y.*; Nagai, T.; Kodera, M.

    Chemical Communications (Cambridge, United Kingdom) 2012, 48 (84), 10392-10394.

     

    [54] Reversible O-O Bond Scission of Peroxodiiron (III) to High-Spin Oxodiiron(IV) in Dioxygen Activation of a Diiron Center with a Bis-tpa Dinucleating Ligand as a Soluble Methane Monooxygenase

    Model. Kodera, M.; Kawahara, Y.; Hitomi, Y.; Nomura, T.; Ogura, T.; Kobayashi, Y.

    Journal of the American Chemical Society 2012, 134 (32), 13236-13239.

     

    [53] Synthesis, Reactivity, and Spectroscopic Properties of meso-Triaryl-5-oxaporphyrins.

    Kakeya, K.; Nakagawa, A.; Mizutani, T.; Hitomi, Y.; Kodera, M.

    Journal of Organic Chemistry 2012, 77 (15), 6510-6519.

     

    [52] Formation mechanism of metal nanoparticles studied by XAFS spectroscopy and effective synthesis of small metal nanoparticles.

    Tanaka, T.; Ohyama, J.; Teramura, K.; Hitomi, Y.

    Catalysis Today 2012, 183 (1), 108-118.

     

    [51] An Iron(III)-Monoamidate Complex Catalyst for Selective Hydroxylation of Alkane C-H Bonds with Hydrogen Peroxide.

    Hitomi, Y.*; Arakawa, K.; Funabiki, T.; Kodera, M.

    Angewandte Chemie, International Edition 2012, 51 (14), 3448-3452.

     

    [50] Detection of Enzymatically Generated Hydrogen Peroxide by Metal-Based Fluorescent Probe.

    Hitomi, Y.*; Takeyasu, T.; Funabiki, T.; Kodera, M.

    Analytical Chemistry (Washington, DC, United States) 2011, 83 (24), 9213-9216.

     

    [49] π Back-Bonding of Iron(II) Complexes Supported by Tris(pyrid-2-ylmethyl)amine and Its Nitro-Substituted Derivatives.

    Furukawa, S.; Hitomi, Y.*; Shishido, T.; Teramura, K.; Tanaka, T.

    Journal of Physical Chemistry A 2011, 115 (46), 13589-13595.

     

    [48] Synthesis and characterization of zinc chelator conjugated with cationic peptide.

    Hitomi, Y.*; Kashida, A.; Nomura, A.; Hayashi, M.; Kodera, M.

    Peptide Science 2011, 48th, 319-322.

     

    [47] Efficient aerobic oxidation of hydrocarbons promoted by high-spin nonheme Fe(II) complexes without any reductant.

    Furukawa, S.; Hitomi, Y.*; Shishido, T.; Tanaka, T.

    Inorganica Chimica Acta 2011, 378 (1), 19-23.

     

    [46] An in situ quick XAFS spectroscopy study on the formation mechanism of small gold nanoparticles supported by porphyrin-cored tetradentate passivants.

    Ohyama, J.; Teramura, K.; Higuchi, Y.; Shishido, T.; Hitomi, Y.; Aoki, K.; Funabiki, T.; Kodera, M.; Kato, K.; Tanida, H.; Uruga, T.; Tanaka, T.

    Physical Chemistry Chemical Physics 2011, 13 (23), 11128-11135.

     

    [45] Multistate CASPT2 Study of Native Iron(III)-Dependent Catechol Dioxygenase and Its Functional Models: Electronic Structure and Ligand-to-Metal Charge-Transfer Excitation.

    Nakatani, N.; Hitomi, Y.; Sakaki, S.

    Journal of Physical Chemistry B 2011, 115 (16), 4781-4789.

     

    [44] In Situ Au L3 and L2 edge XANES spectral analysis during growth of thiol protected gold nanoparticles for the study on particle size dependent electronic properties.

    Ohyama, J.; Teramura, K.; Shishido, T.; Hitomi, Y.; Kato, K.; Tanida, H.; Uruga, T.; Tanaka, T.

    Chemical Physics Letters 2011, 507 (1-3), 105-110.

     

    [43] In Situ Observation of Nucleation and Growth Process of Gold Nanoparticles by Quick XAFS Spectroscopy.

    Ohyama, J.; Teramura, K.; Higuchi, Y.; Shishido, T.; Hitomi, Y.; Kato, K.; Tanida, H.; Uruga, T.; Tanaka, T.

    ChemPhysChem 2011, 12 (1), 127-131.

     

    [42] Synthesis and Catalytic Performance of Organic-Inorganic Hybrid Mesoporous Material Having Basic Nanospace.

    Shishido, T.; Kawaguchi, T.; Iwashige, T.; Teramura, K.; Hitomi, Y.; Tanaka, T.

    Catalysis Letters 2010, 140 (3-4), 121-126.

     

    [41] Tris(2-picolinyl)methane and its copper(I) complex.

    Kajita, Y.; Tachi, Y.; Hitomi, Y.; Nakagawa, T.; Kishima, Y.; Kodera, M.; Letko, C. S.; Rauchfuss, T. B.

    Inorganic Syntheses 2010, 35, 74-77.

     

    [40] Efficient capping of growing gold nanoparticles by porphyrin having two disulfide straps over one face.

    Hitomi, Y.*; Ohyama, J.; Higuchi, Y.; Aoki, K.; Shishido, T.; Funabiki, T.; Kodera, M.; Tanaka, T.

    Bulletin of the Chemical Society of Japan 2010, 83 (11), 1392-1396.

     

    [39] Fast guest exchange of a 1:1 zinc porphyrin-amine host-guest complex via a six-coordinated zinc porphyrin.

    Hitomi, Y.*; Ohyama, J.; Takegoshi, M.; Ando, A.; Funabiki, T.; Kodera, M.; Tanaka, T.

    Bulletin of the Chemical Society of Japan 2010, 83 (8), 950-952.

     

    [38] Mechanism of Photooxidation of Alcohol over Nb2O5.

    Shishido, T.; Miyatake, T.; Teramura, K.; Hitomi, Y.; Yamashita, H.; Tanaka, T.

    Journal of Physical Chemistry C 2009, 113 (43), 18713-18718.

     

    [37] Size Controlled Synthesis of Gold Nanoparticles by Porphyrin with Four Sulfur Atoms.

    Ohyama, J.; Hitomi, Y.; Higuchi, Y.; Tanaka, T.

    Topics in Catalysis 2009, 52 (6-7), 852-859.

     

    [36] Synthesis and Characterization of a Binuclear Iron(III) Complex Bridged by 1-Aminocyclopropane-1-carboxylic Acid. Ethylene Production in the Presence of Hydrogen Peroxide.

    Ghattas, W.; Serhan, Z.; El Bakkali-Taheri, N.; Reglier, M.; Kodera, M.; Hitomi, Y.; Simaan, A.

    J. Inorganic Chemistry 2009, 48 (9), 3910-3912.

     

    [35] One-phase synthesis of small gold nanoparticles coated by a horizontal porphyrin monolayer.

    Ohyama, J.; Hitomi, Y.; Higuchi, Y.; Shinagawa, M.; Mukai, H.; Kodera, M.; Teramura, K.; Shishido, T.; Tanaka, T.

    Chemical Communications (Cambridge, United Kingdom) 2008, (47), 6300-6302.

     

    [34] XAFS Study of Tungsten L1- and L3-Edges: Structural Analysis of WO3 Species Loaded on TiO2 as a Catalyst for Photo-oxidation of NH3.

    Yamazoe, S.; Hitomi, Y.; Shishido, T.; Tanaka, T.

    Journal of Physical Chemistry C 2008, 112 (17), 6869-6879.

     

    [33] Identification of a copper(I) intermediate in the conversion of 1-aminocyclopropane carboxylic acid (ACC) into ethylene by Cu(II)-ACC complexes and hydrogen peroxide.

    Ghattas, W.; Giorgi, M.; Mekmouche, Y.; Tanaka, T.; Rockenbauer, A.; Reglier, M.; Hitomi, Y.; Simaan, A.

    J. Inorganic Chemistry 2008, 47 (11), 4627-4638.

     

    [32] Alkane hydroxylation catalyzed by a series of mononuclear nonheme iron complexes containing 4-nitropyridine ligands.

    Hitomi, Y.; Furukawa, S.; Higuchi, M.; Shishido, T.; Tanaka, T.

    Journal of Molecular Catalysis A: Chemical 2008, 288 (1-2), 83-86.

     

    [31] Promotion effect of tungsten oxide on photo-assisted selective catalytic reduction of NO with NH3 over TiO2.

    Yamazoe, S.; Masutani, Y.; Teramura, K.; Hitomi, Y.; Shishido, T.; Tanaka, T.

    Applied Catalysis, B: Environmental 2008, 83 (1-2), 123-130.

     

    [30] Kinetic study of photo-oxidation of NH3 over TiO2.

    Yamazoe, S.; Hitomi, Y.; Shishido, T.; Tanaka, T.

    Applied Catalysis, B: Environmental 2008, 82 (1-2), 67-76.

     

    [29] Visible Light Absorbed NH2 Species Derived from NH3 Adsorbed on TiO2 for Photoassisted Selective Catalytic Reduction.

    Yamazoe, S.; Teramura, K.; Hitomi, Y.; Shishido, T.; Tanaka, T.

    Journal of Physical Chemistry C 2007, 111 (38), 14189-14197.

     

    [28] Mechanism of Photo-Oxidation of NH3 over TiO2: Fourier Transform Infrared Study of the Intermediate Species.

    Yamazoe, S.; Okumura, T.; Hitomi, Y.; Shishido, T.; Tanaka, T.

    Journal of Physical Chemistry C 2007, 111 (29), 11077-11085.

     

    [27] Adsorption of manganese porphyrin on metal oxides and its enhanced catalytic activity on epoxidation reaction.

    Hitomi, Y.; Mukai, H.; Ohyama, J.; Shinagawa, M.; Shishido, T.; Tanaka, T.

    Chemistry Letters 2007, 36 (5), 660-661.

     

    [26] Liquid phase photooxidation of alcohol over niobium oxide without solvents.

    Ohuchi, T.; Miyatake, T.; Hitomi, Y.; Tanaka, T.

    Catalysis Today 2007, 120 (2), 233-239.

     

    [25] Mechanistic study on regioselective oxygenation reaction of 1,2-quinones with peroxybenzoic acids: Relevant to mechanisms of catechol dioxygenases.

    Hitomi, Y.; Yoshida, H.; Tanaka, T.; Funabiki, T.

    Journal of Molecular Catalysis A: Chemical 2006, 251 (1-2), 239-245.

     

    [24] Non-covalent modification of the heme-pocket of apomyoglobin by a 1,10-phenanthroline derivative.

    Hitomi, Y.; Mukai, H.; Yoshimura, H.; Tanaka, T.; Funabiki, T.

    Bioorganic & Medicinal Chemistry Letters 2006, 16 (2), 248-251.

     

    [23] Correlation of Spin States and Spin Delocalization with the Dioxygen Reactivity of Catecholatoiron(III) Complexes.

    Higuchi, M.; Hitomi, Y.; Minami, H.; Tanaka, T.; Funabiki, T.

    Inorganic Chemistry 2005, 44 (24), 8810-8821.

     

    [22] Catalytic oxygenative degradation of 4-chlorocatechol by a nonheme iron(III) complex-Mechanism and prevention of catechol ester formation.

    Hitomi, Y.; Higuchi, M.; Tanaka, T.; Funabiki, T.

    Journal of Molecular Catalysis A: Chemical 2005, 240 (1-2), 207-213.

     

    [21] Electron spray ionization mass study on dioxygenation process in the reaction of catecholato iron(III) complexes with molecular oxygen.

    Hitomi, Y.; Higuchi, M.; Tanaka, T.; Funabiki, T.

    Inorganica Chimica Acta 2005, 358 (12), 3465-3470.

     

    [20] Aerobic Catechol Oxidation Catalyzed by a Bis(μ-oxo)dimanganese(III,III) Complex via a Manganese(II)-Semiquinonate Complex.

    Hitomi, Y.; Ando, A.; Matsui, H.; Ito, T.; Tanaka, T.; Ogo, S.; Funabiki, T.

    Inorganic Chemistry 2005, 44 (10), 3473-3478.

     

    [19] Tuning of spin crossover equilibrium in catecholatoiron(III) complexes by supporting ligands.

    Hitomi, Y.; Higuchi, M.; Minami, H.; Tanaka, T.; Funabiki, T.

    Chemical Communications (Cambridge, United Kingdom) 2005, (13), 1758-1760.

     

    [18] A linear correlation between energy of LMCT band and oxygenation reaction rate of a series of catecholatoiron(III) complexes: initial oxygen binding during intradiol catechol oxygenation.

    Hitomi, Y.; Yoshida, M.; Higuchi, M.; Minami, H.; Tanaka, T.; Funabiki, T.

    Journal of Inorganic Biochemistry 2005, 99 (3), 755-763.

     

    [17] Chemical properties of sperm whale myoglobins reconstituted with monopropionate hemins.

    Hayashi, T.; Nakagawa, T.; Harada, K.; Matsuo, T.; Hitomi, Y.; Hisaeda, Y.

    Chemistry Letters 2004, 33 (11), 1512-1513.

     

    [16] Enhancement of enzymatic activity for myoglobins by modification of heme-propionate side chains.

    Hayashi, T.; Sato, H.; Matsuo, T.; Matsuda, T.; Hitomi, Y.; Hisaeda, Y.

    Journal of Porphyrins and Phthalocyanines 2004, 8 (1, 2 & 3), 255-264.

     

    [15] A reaction intermediate involved in oxygenation of catecholatoiron(III) complexes with molecular oxygen - relevance to catechol dioxygenases.

    Hitomi, Y.; Tase, Y.; Higuchi, M.; Tanaka, T.; Funabiki, T.

    Chemistry Letters 2004, 33 (3), 316-317.

     

    [14] On the mechanisms of oxygenations of catechols by oxygenases and their model complexes.

    Funabiki, T.; Yoshida, M.; Yoshida, H.; Tase, Y.; Ando, A.; Hitomi, Y.

    Journal of Inorganic Biochemistry 2003, 96, 135.

     

    [13] Contribution of heme-propionate side chains to structure and function of myoglobin: chemical approach by artificially created prosthetic groups.

    Hayashi, T.; Matsuo, T.; Hitomi, Y.; Okawa, K.; Suzuki, A.; Shiro, Y.; Iizuka, T.; Hisaeda, Y.; Ogoshi, H.

    Journal of Inorganic Biochemistry 2002, 91 (1), 94-100.

     

    [12] Oxygenative cleavage of catechols including protocatechuic acid with molecular oxygen in water catalyzed by water-soluble non-heme iron(III) complexes in relevance to catechol dioxygenases.

    Funabiki, T.; Sugio, D.; Inui, N.; Maeda, M.; Hitomi, Y.

    Chemical Communications (Cambridge, United Kingdom) 2002, (5), 412-413.

     

    [11] Structures and electronic properties of the catecholatoiron complexes in relation to catechol dioxygenases: chlorocatecholatoiron complexes are compared to the 3,5-di-tert-butylcatecholatoiron complex in the solid state and in solution.

    Funabiki, T.; Fukui, A.; Hitomi, Y.; Higuchi, M.; Yamamoto, T.; Tanaka, T.; Tani, F.; Naruta, Y.

    Journal of Inorganic Biochemistry 2002, 91 (1), 151-158.

     

    [10] Zinc-binding thermodynamics of the metal sensor/regulator protein, ZntR.

    Hitomi, Y.; Outten, C. E.; O'Halloran, T. V.

    Journal of Inorganic Biochemistry 2001, 86, 265.

     

    [9] Extreme Zinc-Binding Thermodynamics of the Metal Sensor/Regulator Protein, ZntR.

    Hitomi, Y.; Outten, C. E.; O'Halloran, T. V.

    Journal of the American Chemical Society 2001, 123 (35), 8614-8615.

     

    [8] Interprotein electron transfer reaction regulated by an artificial interface.

    Hitomi, Y.; Hayashi, T.; Wada, K.; Mizutani, T.; Hisaeda, Y.; Ogoshi, H.

    Angewandte Chemie, International Edition 2001, 40 (6), 1098-1101.

     

    [7] Peroxidase activity of myoglobin is enhanced by chemical mutation of heme-propionates.

    Hayashi, T.; Hitomi, Y.; Ando, T.; Mizutani, T.; Hisaeda, Y.; Kitagawa, S.; Ogoshi, H.

    Journal of the American Chemical Society 1999, 121 (34), 7747-7750.

     

    [6] Enhancement of Peroxidase Activity by Use of Reconstituted Myoglobin

    Hayashi, T.; Takimura, T.; Aoyama, Y.; Hitomi, Y.; Suzuki, A.; Ogoshi, H.

    Journal of Inorganic Biochemistry 1999, 74, 156.

     

    [5] Structure and reactivity of reconstituted myoglobins: interaction between protein and polar side chain of chemically modified hemin.

    Hayashi, T.; Takimura, T.; Aoyama, Y.; Hitomi, Y.; Suzuki, A.; Ogoshi, H.

    Inorganica Chimica Acta 1998, 275-276 (1,2), 159-167.

     

    [4] Artificial Protein-Protein Complexation between a Reconstituted Myoglobin and Cytochrome c

    Hayashi, T.; Hitomi, Y.; Ogoshi, H.

    Journal of the American Chemical Society 1998, 120 (20), 4910-4915.

     

    [3] Photoinduced electron transfer from zinc porphyrin to a linked quinone in myoglobin.

    Hayashi, T.; Takimura, T.; Ohara, T.; Hitomi, Y.; Ogoshi, H.

    Journal of the Chemical Society, Chemical Communications 1995, (24), 2503-4.

     

    [2] Molecular recognition of horse heart apomyoglobin to monopropionate hemin: thermodynamic determination of two orientational isomers by 1H NMR spectra.

    Hayashi, T.; Hitomi, Y.; Suzuki, A.; Takimura, T.; Ogoshi, H.

    Chemistry Letters 1995, (10), 911-12.

     

    [1] Relationship between electron transfer and the structure of a quinone-linked zinc porphyrin with a flexible peptide spacer.

    Hayashi, T.; Takimura, T.; Hitomi, Y.; Ohara, T.; Ogoshi, H.

    Journal of the Chemical Society, Chemical Communications 1995, (5), 545-6.